Potency under pressure: the impact of hydrostatic pressure on antigenic properties of influenza virus hemagglutinin
نویسندگان
چکیده
BACKGROUND Influenza vaccines are effective in protecting against illness and death caused by this seasonal pathogen. The potency of influenza vaccines is measured by single radial immunodiffusion (SRID) assay that quantifies antigenic forms of hemagglutinin (HA). Hydrostatic pressure results in loss of binding of influenza virus to red blood cells, but it is not known whether this infers loss of potency. OBJECTIVES Our goal was to determine the impact of pressure on HA antigenic structure. METHODS Viruses included in the 2010-2011 trivalent influenza vaccine were subjected to increasing number of cycles at 35,000 psi in a barocycler, and the impact of this treatment measured by determining hemagglutination units (HAU) and potency. Potency was assessed by SRID and immunogenicity in mice. RESULTS After 25 cycles of pressure, the potency measured by SRID assay was below the limit of quantification for the H1N1 and B viruses used in our study, while the H3N2 component retained some potency that was lost after 50 pressure cycles. Pressure treatment also resulted in loss of HAU, but this did not strictly correlate with the potency value. Curiously, loss of potency was abrogated when influenza A, but not B, antigens were exposed to pressure in chicken egg allantoic fluid. Protection against pressure appeared to be mediated by specific interactions because addition of bovine serum albumin did not have the same effect. CONCLUSIONS Our results show that pressure-induced loss of potency is strain dependent and suggests that pressure treatment may be useful for identifying vaccine formulations that improve HA stability.
منابع مشابه
تغییرات ژنتیکی ویروس و فرار از سامانه ایمنی، چالشهای پیشرو علیه آنفلوآنزا: مقاله مروری
The spread of influenza viruses in multiple bird and mammalian species is a worldwide serious threat to human and animal populations' health and raise major concern for ongoing pandemic in humans. Direct transmission of the avian viruses which have sialic acid specific receptors similar to human influenza viruses are a warning to the emergence of a new mutant strain that is likely to share mole...
متن کاملBuckling Analysis of Functionally Graded Shallow Spherical Shells Under External Hydrostatic Pressure
The aim of this paper is to determine the critical buckling load for simply supported thin shallow spherical shells made of functionally graded material (FGM) subjected to uniform external pressure. A metal-ceramic functionally graded (FG) shell with a power law distribution for volume fraction is considered, where its properties vary gradually through the shell thickness direction from pure me...
متن کاملNetworks link antigenic and receptor-binding sites of influenza hemagglutinin: Mechanistic insight into fitter strain propagation
Influenza viral passaging through pre-vaccinated mice shows that emergent antigenic site mutations on the viral hemagglutinin (HA) impact host receptor-binding affinity and, therefore, the evolution of fitter influenza strains. To understand this phenomenon, we computed the Significant Interactions Network (SIN) for each residue and mapped the networks of antigenic site residues on a representa...
متن کاملIntranasal Immunization with Pressure Inactivated Avian Influenza Elicits Cellular and Humoral Responses in Mice
Influenza viruses pose a serious global health threat, particularly in light of newly emerging strains, such as the avian influenza H5N1 and H7N9 viruses. Vaccination remains the primary method for preventing acquiring influenza or for avoiding developing serious complications related to the disease. Vaccinations based on inactivated split virus vaccines or on chemically inactivated whole virus...
متن کاملAnalysis of antigenically important residues in human influenza A virus in terms of B-cell epitopes.
In this paper we undertake an analysis of the antigenicity of influenza A virus hemagglutinin. We developed a novel computational approach to the identification of antigenically active regions and showed that the amino acid substitutions between successive predominant seasonal strains form clusters that are consistent, in terms of both their location and their size, with the properties of B-cel...
متن کامل